Back to Search Start Over

Single-atomic-site iron on N-doped carbon for chemoselective reduction of nitroarenes.

Authors :
Lu, Guoping
Sun, Kangkang
Lin, Yamei
Du, Qixuan
Zhang, Jiawei
Wang, Kui
Wang, Pengcheng
Source :
Nano Research; Jan2022, Vol. 15 Issue 1, p603-611, 9p
Publication Year :
2022

Abstract

A facile, gram-scale and sustainable approach has been established for the synthesis of single-atomic-site iron on N-doped carbon (Fe<subscript>SA</subscript>@NC-20A) via the pyrolysis of aniline modified FeZn-ZIFs, in which the synthesis of zeolitic imidazolate frameworks (ZIFs) can be accomplished in water at room temperature, and no acid etching is required. The as-synthesized catalyst exhibits better performance on the chemoselective hydrogenation of nitroarenes with a broad substrate scope (turnover frequency (TOF) up to 1,727 h<superscript>−1</superscript>, 23 examples) than most of previously reported works. Based on high-angle annular dark field scanning transmission microscopy (HAADF-STEM) images in combination with X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron spin resonance (ESR), and Mössbauer spectroscopy, Fe is dispersed as single atoms via forming FeN<subscript>x</subscript> (x = 4–6). This work not only determines the active sites of Fe<subscript>SA</subscript>@NC-20A for hydrogenation (FeN<subscript>4</subscript>), but also proposes tentative pathways for both N-H activation of hydrazine and the reduction of nitroarene on FeN<subscript>4</subscript> site, both of which are the key steps for the hydrogenation of nitroarenes. In addition, this catalyst shows excellent stability, and no significant activity degradation is observed when recycling for 10 times or restoring in air for 2 months. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19980124
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nano Research
Publication Type :
Academic Journal
Accession number :
153455107
Full Text :
https://doi.org/10.1007/s12274-021-3526-5