Back to Search Start Over

Stepwise Generation of Mono‐, Di‐, and Triply‐Reduced Warped Nanographenes: Charge‐Dependent Aromaticity, Surface Nonequivalence, Swing Distortion, and Metal Binding Sites.

Authors :
Spisak, Sarah N.
Zhou, Zheng
Liu, Shuyang
Xu, Qi
Wei, Zheng
Kato, Kenta
Segawa, Yasutomo
Itami, Kenichiro
Rogachev, Andrey Yu.
Petrukhina, Marina A.
Source :
Angewandte Chemie; 11/22/2021, Vol. 133 Issue 48, p25649-25657, 9p
Publication Year :
2021

Abstract

The stepwise chemical reduction of a molecular warped nanographene (WNG) having a negatively curved π‐surface and defined C80H30 composition with Cs metal used as the reducing and complexing agent allowed the isolation of three different reduced states with one, two, and three electrons added to its π‐conjugated system. This provided a unique series of nanosized carbanions with increasing negative charge for in‐depth structural analysis of consequences of controlled electron charging of non‐planar nanographenes, using X‐ray crystallographic and computational tools. The 3D molecular electrostatic potential (MEP) maps identified the negative charge localization at the central part of the WNG surface where selective coordination of Cs+ ions is confirmed crystallographically. In‐depth theoretical investigation revealed a complex response of the WNG to the stepwise electron acquisition. The extended and contorted π‐surface of the WNG undergoes subtle swinging distortions that are accompanied by notable changes in the electronic structure and site‐dependent aromaticity of the resulting carbanions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
133
Issue :
48
Database :
Complementary Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
153579529
Full Text :
https://doi.org/10.1002/ange.202110748