Back to Search Start Over

New climate models reveal faster and larger increases in Arctic precipitation than previously projected.

Authors :
McCrystall, Michelle R.
Stroeve, Julienne
Serreze, Mark
Forbes, Bruce C.
Screen, James A.
Source :
Nature Communications; 11/30/2021, Vol. 12 Issue 1, p1-12, 12p
Publication Year :
2021

Abstract

As the Arctic continues to warm faster than the rest of the planet, evidence mounts that the region is experiencing unprecedented environmental change. The hydrological cycle is projected to intensify throughout the twenty-first century, with increased evaporation from expanding open water areas and more precipitation. The latest projections from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) point to more rapid Arctic warming and sea-ice loss by the year 2100 than in previous projections, and consequently, larger and faster changes in the hydrological cycle. Arctic precipitation (rainfall) increases more rapidly in CMIP6 than in CMIP5 due to greater global warming and poleward moisture transport, greater Arctic amplification and sea-ice loss and increased sensitivity of precipitation to Arctic warming. The transition from a snow- to rain-dominated Arctic in the summer and autumn is projected to occur decades earlier and at a lower level of global warming, potentially under 1.5 °C, with profound climatic, ecosystem and socio-economic impacts. The Arctic warms faster than other areas of the planet, which also influences precipitation. Here, the authors show that the latest CMIP6 model ensemble shows a faster Arctic warming and sea-ice loss, causing an earlier transition from a snow- to a rain-dominated Arctic than previously thought. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
153899632
Full Text :
https://doi.org/10.1038/s41467-021-27031-y