Back to Search
Start Over
Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami.
- Source :
- Nano Research; Feb2022, Vol. 15 Issue 2, p1327-1337, 11p
- Publication Year :
- 2022
-
Abstract
- Controllable strong interactions between a nanocavity and a single emitter is important to manipulating optical emission in a nanophotonic system but challenging to achieve. Herein a three-dimensional DNA origami, named as DNA rack (DR) is proposed and demonstrated to deterministically and precisely assemble single emitters within ultra-small plasmonic nanocavities formed by closely coupled gold nanorods (AuNRs). Uniquely, the DR is in a saddle shape, with two tubular grooves that geometrically allow a snug fit and linearly align two AuNRs with a bending angle < 10°. It also includes a spacer at the saddle point to maintain the gap between AuNRs as small as 2–3 nm, forming a nanocavity estimated to be 20 nm<superscript>3</superscript> and an experimentally measured Q factor of 7.3. A DNA docking strand is designed at the spacer to position a single fluorescent emitter at nanometer accuracy within the cavity. Using Cy5 as a model emitter, a ∼ 30-fold fluorescence enhancement and a significantly reduced emission lifetime (from 1.6 ns to 670 ps) were experimentally verified, confirming significant emitter-cavity interactions. This DR-templated assembly method is capable of fitting AuNRs of variable length-to-width aspect ratios to form anisotropic nanocavities and deterministically incorporate different single emitters, thus enabling flexible design of both cavity resonance and emission wavelengths to tailor light-matter interactions at nanometer scale. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19980124
- Volume :
- 15
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Nano Research
- Publication Type :
- Academic Journal
- Accession number :
- 154043020
- Full Text :
- https://doi.org/10.1007/s12274-021-3661-z