Back to Search Start Over

Rice Straw as a Natural Sorbent in a Filter System as an Approach to Bioremediate Diesel Pollution.

Authors :
Taufik, Siti Hajar
Ahmad, Siti Aqlima
Zakaria, Nur Nadhirah
Shaharuddin, Noor Azmi
Azmi, Alyza Azzura
Khalid, Farah Eryssa
Merican, Faradina
Convey, Peter
Zulkharnain, Azham
Abdul Khalil, Khalilah
Source :
Water (20734441); Dec2021, Vol. 13 Issue 23, p3317, 1p
Publication Year :
2021

Abstract

Rice straw, an agricultural waste product generated in huge quantities worldwide, is utilized to remediate diesel pollution as it possesses excellent characteristics as a natural sorbent. This study aimed to optimize factors that significantly influence the sorption capacity and the efficiency of oil absorption from diesel-polluted seawater by rice straw (RS). Spectroscopic analysis by attenuated total reflectance infrared (ATR-IR) spectroscopy and surface morphology characterization by variable pressure scanning electron microscopy (VPSEM) and energy-dispersive X-ray microanalysis (EDX) were carried out in order to understand the sorbent capability. Optimization of the factors of temperature pre-treatment of RS (90, 100, 110, 120, 130 or 140 °C), time of heating (10, 20, 30, 40, 50, 60 or 70 min), packing density (0.08, 0.10, 0.12, 0.14 or 0.16 g cm<superscript>−3</superscript>) and oil concentration (5, 10, 15, 20 or 25% (v/v)) was carried out using the conventional one-factor-at-a-time (OFAT) approach. To eliminate any non-significant factors, a Plackett–Burman design (PBD) in the response surface methodology (RSM) was used. A central composite design (CCD) was used to identify the presence of significant interactions between factors. The quadratic model produced provided a very good fit to the data (R<superscript>2</superscript> = 0.9652). The optimized conditions generated from the CCD were 120 °C, 10 min, 0.148 g cm<superscript>−3</superscript> and 25% (v/v), and these conditions enhanced oil sorption capacity from 19.6 (OFAT) to 26 mL of diesel oil, a finding verified experimentally. This study provides an improved understanding of the use of a natural sorbent as an approach to remediate diesel pollution. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734441
Volume :
13
Issue :
23
Database :
Complementary Index
Journal :
Water (20734441)
Publication Type :
Academic Journal
Accession number :
154082099
Full Text :
https://doi.org/10.3390/w13233317