Back to Search
Start Over
Beta vulgaris L. (Beetroot) Methanolic Extract Prevents Hepatic Steatosis and Liver Damage in T2DM Rats by Hypoglycemic, Insulin-Sensitizing, Antioxidant Effects, and Upregulation of PPARα.
- Source :
- Biology (2079-7737); Dec2021, Vol. 10 Issue 12, p1306-1306, 1p
- Publication Year :
- 2021
-
Abstract
- Simple Summary: Beetroot is one of the most consumable plants across the world. Previous studies have shown many health benefits of beetroot, with evidence of having potent hypoglycemic, antioxidant, and anti-inflammatory effects. The data obtained from this study further confirmed this effect in streptozotocin-diabetic animals. They showed the ability of methanolic beetroot extract to prevent the associated hepatic oxidative stress, inflammation, steatosis, and dyslipidaemia. However, the protection mechanisms involve, at least, upregulation of endogenous antioxidants, anti-apoptotic Bcl2, and PPARα. The present study examined if methanolic beetroot extract (BE) could prevent dyslipidemia and hepatic steatosis and damage in a type-2 diabetes mellitus (T2DM) rat model and studied some mechanisms of action. T2DM was induced in adult male Wistar rats by a low single dose of streptozotocin (STZ) (35 mg/kg, i.p) and a high-fat diet (HFD) feeding for 5 weeks. Control or T2DM rats then continued on standard or HFDs for another 12 weeks and were treated with the vehicle or BE (250 or 500 mg/kg). BE, at both doses, significantly improved liver structure and reduced hepatic lipid accumulation in the livers of T2DM rats. They also reduced body weight gain, serum glucose, insulin levels, serum and hepatic levels of cholesterol, triglycerides, free fatty acids, and serum levels of low-density lipoproteins in T2DM rats. In concomitant, they significantly reduced serum levels of aspartate and alanine aminotransferases, hepatic levels of malondialdehyde, tumor-necrosis factor-α, interleukin-6, and mRNA of Bax, cleaved caspase-3, and SREBP1/2. However, both doses of BE significantly increased hepatic levels of total glutathione, superoxide dismutase, and mRNA levels of Bcl2 and PPARα in the livers of both the control and T2DM rats. All of these effects were dose-dependent and more profound with doses of 500 mg/kg. In conclusion, chronic feeding of BE to STZ/HFD-induced T2DM in rats prevents hepatic steatosis and liver damage by its hypoglycemic and insulin-sensitizing effects and its ability to upregulate antioxidants and PPARα. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20797737
- Volume :
- 10
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- Biology (2079-7737)
- Publication Type :
- Academic Journal
- Accession number :
- 154349211
- Full Text :
- https://doi.org/10.3390/biology10121306