Back to Search
Start Over
Approximation and Gâteaux differentiability of convex function in Banach spaces.
- Source :
- Mathematische Nachrichten; Dec2021, Vol. 294 Issue 12, p2413-2424, 12p
- Publication Year :
- 2021
-
Abstract
- This paper shows that if f is a convex continuous function on a Gâteaux differentiability space X, then for any separable closed subspace E of X, there exists a sequence {fn}n=1∞${\big \lbrace f_{n}\big \rbrace} _{n=1}^{\infty }$ of continuous convex functions such that (1) fn(x)≤fn+1(x)≤f(x)$f_{n}(x)\le f_{n+1}(x)\le f(x)$ on X; (2) fn$f_{n}$ is Gâteaux differentiable at all points of a dense open subset of X; (3) fn(x)→f(x)${f_n}(x) \rightarrow f(x)$ on E. Moreover, if X is separable, then there exists a continuous convex function sequence {fn}n=1∞${\big \lbrace f_{n}\big \rbrace} _{n=1}^{\infty }$ such that (1) and (2) are true and fn(x)→f(x)${f_n}(x) \rightarrow f(x)$ on X. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0025584X
- Volume :
- 294
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- Mathematische Nachrichten
- Publication Type :
- Academic Journal
- Accession number :
- 154687567
- Full Text :
- https://doi.org/10.1002/mana.201900462