Back to Search
Start Over
Hom-Leibniz 2-algebras.
- Source :
- Asian-European Journal of Mathematics; Jan2022, Vol. 15 Issue 1, p1-21, 21p
- Publication Year :
- 2022
-
Abstract
- We define a Hom-Leibniz 2-algebra, which can be considered as the deformation and categorification of Leibniz algebras. We give the notion of 2-term strongly homotopy (sh) Hom-Leibniz algebras. We prove that the 2-term sh Hom-Leibniz algebras are equivalent to the Hom-Leibniz 2-algebras. We show that there exists a one-to-one correspondence between crossed modules of Hom-Leibniz algebras and 2-term Hom-differential graded Leibniz algebras. We also prove that the skeletal 2-term sh Hom-Leibniz algebras can be classified by using the third cohomology group of Hom-Leibniz algebras. We construct a Hom-Leibniz 2-algebra from an Omni-Hom-Lie 2-algebra. Moreover, we also give the construction of Hom-Leibniz 2-algebras from Hom-associative Rota–Baxter algebras. [ABSTRACT FROM AUTHOR]
- Subjects :
- LIE algebras
MODULES (Algebra)
GROUP algebras
ALGEBRA
DIFFERENTIAL algebra
Subjects
Details
- Language :
- English
- ISSN :
- 17935571
- Volume :
- 15
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Asian-European Journal of Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 154742369
- Full Text :
- https://doi.org/10.1142/S1793557122500152