Back to Search Start Over

Towards Bio-Inspired Anomaly Detection Using the Cursory Dendritic Cell Algorithm.

Authors :
Pinto, Carlos
Pinto, Rui
Gonçalves, Gil
Source :
Algorithms; Jan2022, Vol. 15 Issue 1, p1-1, 1p
Publication Year :
2022

Abstract

The autonomous and adaptable identification of anomalies in industrial contexts, particularly in the physical processes of Cyber-Physical Production Systems (CPPS), requires using critical technologies to identify failures correctly. Most of the existing solutions in the anomaly detection research area do not consider such systems' dynamics. Due to the complexity and multidimensionality of CPPS, a scalable, adaptable, and rapid anomaly detection system is needed, considering the new design specifications of Industry 4.0 solutions. Immune-based models, such as the Dendritic Cell Algorithm (DCA), may provide a rich source of inspiration for detecting anomalies, since the anomaly detection problem in CPPS greatly resembles the functionality of the biological dendritic cells in defending the human body from hazardous pathogens. This paper tackles DCA limitations that may compromise its usage in anomaly detection applications, such as the manual characterization of safe and danger signals, data analysis not suitable for online classification, and the lack of an object-oriented implementation of the algorithm. The proposed approach, the Cursory Dendritic Cell Algorithm (CDCA), is a novel variation of the DCA, developed to be flexible and monitor physical industrial processes continually while detecting anomalies in an online fashion. This work's contribution is threefold. First, it provides a comprehensive review of Artificial Immune Systems (AIS), focusing on AIS applied to the anomaly detection problem. Then, a new object-oriented architecture for the DCA implementation is described, enabling the modularity and abstraction of the algorithm stages into different classes (modules). Finally, the CDCA for the anomaly detection problem is proposed. The CDCA was successfully validated in two industrial-oriented dataset benchmarks for physical anomaly and network intrusion detection, the Skoltech Anomaly Benchmark (SKAB) and M2M using OPC UA. When compared to other algorithms, the proposed approach exhibits promising classification results. It was placed fourth on the SKAB scoreboard and presented a competitive performance with the incremental Dendritic Cell Algorithm (iDCA). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994893
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Algorithms
Publication Type :
Academic Journal
Accession number :
154802589
Full Text :
https://doi.org/10.3390/a15010001