Back to Search
Start Over
Power Generation Control of Renewable Energy Based Hybrid Deregulated Power System.
- Source :
- Energies (19961073); Jan2022, Vol. 15 Issue 2, p517, 1p
- Publication Year :
- 2022
-
Abstract
- This work presents the power generation control of a two-area, hybrid, deregulated power system integrated with renewable energy sources (RES). The incorporation of appropriate system non-linearities and RES into the power system makes it complex, but more practical. The hybrid deregulated power system with RES is a complex nonlinear system that regularly exposes the major issue of system dynamic control due to insufficient damping under varying loading circumstances. The generation-demand equilibrium point of the power system varies following a contingency; hence, it becomes difficult to maintain the appropriate equilibrium point via traditional control approaches. To solve this problem, novel control approaches, along with rapid-acting energy storage devices (ESD), are immediate need for advanced power systems. As a result, various secondary controllers are inspected for improvements in system dynamics. A performance comparison infers the cascaded ID-PD controller as the optimum one. The secondary controller gains are successfully optimized by the powerful satin bowerbird optimization (SBO) technique. Additionally, the impact of a super-conducting-magnetic-energy-storage (SMES) device in system dynamics and control of developed power system is analyzed in this study. A sensitivity evaluation (SE) infers that SBO-optimized cascaded ID-PD controller gains are strong enough for alterations in load perturbations, system loading, inertial constant (H), solar irradiance and the DISCO involvement matrix (DIM). [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 15
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Energies (19961073)
- Publication Type :
- Academic Journal
- Accession number :
- 154816161
- Full Text :
- https://doi.org/10.3390/en15020517