Back to Search Start Over

Complete Protection Against Yersinia pestis in BALB/c Mouse Model Elicited by Immunization With Inhalable Formulations of rF1-V10 Fusion Protein via Aerosolized Intratracheal Inoculation.

Authors :
Zhang, Wei
Song, Xiaolin
Zhai, Lina
Guo, Jianshu
Zheng, Xinying
Zhang, Lili
Lv, Meng
Hu, Lingfei
Zhou, Dongsheng
Xiong, Xiaolu
Yang, Wenhui
Source :
Frontiers in Immunology; 1/26/2022, Vol. 13, p1-13, 13p
Publication Year :
2022

Abstract

Pneumonic plague, caused by Yersinia pestis , is an infectious disease with high mortality rates unless treated early with antibiotics. Currently, no FDA-approved vaccine against plague is available for human use. The capsular antigen F1, the low-calcium-response V antigen (LcrV), and the recombinant fusion protein (rF1-LcrV) of Y. pestis are leading subunit vaccine candidates under intense investigation; however, the inability of recombinant antigens to provide complete protection against pneumonic plague in animal models remains a significant concern. In this study, we compared immunoprotection against pneumonic plague provided by rF1, rV10 (a truncation of LcrV), and rF1-V10, and vaccinations delivered via aerosolized intratracheal (i.t.) inoculation or subcutaneous (s.c.) injection. We further considered three vaccine formulations: conventional liquid, dry powder produced by spray freeze drying, or dry powder reconstituted in PBS. The main findings are: (i) rF1-V10 immunization with any formulation via i.t. or s.c. routes conferred 100% protection against Y. pestis i.t. infection; (ii) rF1 or rV10 immunization using i.t. delivery provided significantly stronger protection than rF1 or rV10 immunization via s.c. delivery; and (iii) powder formulations of subunit vaccines induced immune responses and provided protection equivalent to those elicited by unprocessed liquid formulations of vaccines. Our data indicate that immunization with a powder formulation of rF1-V10 vaccines via an i.t. route may be a promising vaccination strategy for providing protective immunity against pneumonic plague. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16643224
Volume :
13
Database :
Complementary Index
Journal :
Frontiers in Immunology
Publication Type :
Academic Journal
Accession number :
154895574
Full Text :
https://doi.org/10.3389/fimmu.2022.793382