Back to Search Start Over

Dual Role of Mo6S8 in Polysulfide Conversion and Shuttle for Mg–S Batteries.

Authors :
Wang, Liping
Jankowski, Piotr
Njel, Christian
Bauer, Werner
Li, Zhenyou
Meng, Zhen
Dasari, Bosubabu
Vegge, Tejs
Lastra, Juan Maria García
Zhao‐Karger, Zhirong
Fichtner, Maximilian
Source :
Advanced Science; 3/4/2022, Vol. 9 Issue 7, p1-9, 9p
Publication Year :
2022

Abstract

Magnesium–Sulfur batteries are one of most appealing options among the post‐lithium battery systems due to its potentially high energy density, safe and sustainable electrode materials. The major practical challenges are originated from the soluble magnesium polysulfide intermediates and their shuttling between the electrodes, which cause high overpotentials, low sulfur utilization, and poor Coulombic efficiency. Herein, a functional Mo6S8 modified separator is designed to effectively address these issues. Both the experimental results and density functional theory calculations show that the electrochemically active Mo6S8 layer has a superior adsorption capability of polysulfides and simultaneously acts as a mediator to accelerate the polysulfide conversion kinetics. Remarkably, the magnesium–sulfur cell assembled with the functional separator delivers a high specific energy density (942.9 mA h g−1 in the 1st cycle) and can be cycled at 0.2 C for 200 cycles with a Coulombic efficiency of 96%. This work demonstrates a new design concept toward high‐performance metal–sulfur batteries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21983844
Volume :
9
Issue :
7
Database :
Complementary Index
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
155659859
Full Text :
https://doi.org/10.1002/advs.202104605