Back to Search Start Over

Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California.

Authors :
He, Minxue
Source :
Climate (2225-1154); Feb2022, Vol. 10 Issue 2, p16, 1p
Publication Year :
2022

Abstract

This work aims to assess potential changes in the mean and extreme precipitation and temperature across the Sacramento–San Joaquin Delta (Delta) in California in the 21st century. The study employs operative climate model projections from the Coupled Model Inter-comparison Project Phase 5 (CMIP5). Specifically, 64 individual downscaled daily projections (1/16 degree, approximately 6 by 6 km) on precipitation and temperature from 32 Global Circulation Models (GCMs) under two emission scenarios (RCP 4.5 and RCP 8.5) from 2020–2099 are utilized for the analysis. The results indicate increasing warming (in mean, minimum, and maximum temperature) further into the future under both emission scenarios. Warming also exhibits a strong seasonality, with winters expecting lower and summers expecting higher increases in temperature. In contrast, for mean annual total precipitation, there is no consistent wetter or drier signal. On average, the changes in annual total precipitation are minimal. However, dry season precipitation is projected to decline. The study also shows that the number of wet days is projected to decrease while the number of very wet (daily precipitation over 10 mm) and extremely wet (daily precipitation over 20 mm) days is projected to increase. Moreover, the study illustrates that only about half of the changes in total annual precipitation are projected to come from changes in the wettest 10% of wet days. In contrast, a majority of changes in variance of the annual precipitation comes from changes in variance of the wettest 10% of the wet days. This suggests that fluctuations in large storms are projected to dictate the variability of precipitation in the Delta. Additionally, a general upward trend in dry conditions measured by the Standardized Precipitation-Evapotranspiration Index is expected during the projection period. The trending signal is stronger at multi-year temporal scales (one to four years) and under the higher emission scenario. These change patterns are generally similar across three sub-regions of the Delta (i.e., North, South, and West), even though some changes in the South Delta are the most pronounced. This study further discusses challenges posed by these changes to the Delta's water supply and ecosystems, along with the Delta's resiliency and potential ways to address these challenges. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22251154
Volume :
10
Issue :
2
Database :
Complementary Index
Journal :
Climate (2225-1154)
Publication Type :
Academic Journal
Accession number :
155709273
Full Text :
https://doi.org/10.3390/cli10020016