Back to Search Start Over

Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity.

Authors :
Yu-Hsiu Wang
Ho, Teresa L. F.
Hariharan, Anushya
Hui Chin Goh
Yao Liang Wong
Verkaik, Nicole S.
May Yin Lee
Wai Leong Tam
van Gent, Dik C.
Venkitaraman, Ashok R.
Sheetz, Michael P.
Lane, David P.
Source :
Proceedings of the National Academy of Sciences of the United States of America; 3/8/2022, Vol. 119 Issue 10, Following p1-13, 25p
Publication Year :
2022

Abstract

p53 is primarily known as a downstream transcriptional effector in the DNA damage-response cascade. We report that endogenous p53 rapidly accumulates at DNA damage sites within 2 s of UVA microirradiation. The kinetics of p53 recruitment mimics those of known DNA damage-response proteins, such as Ku70 and poly(- ADP-ribose) polymerase (PARP), and precedes recruitment of Nbs1, 53BP1, and DDB1. Mutations in the DNA-binding and C-terminal domains significantly suppress this rapid recruitment. The C-terminal domain of p53 contains key residues for PARP interac- tion that are required for rapid recruitment of p53 to DNA damage sites, as is PARP-dependent modification. The presence of p53 at damage sites influences the recruitment kinetics of 53BP1 and DDB1 and directs the choice of nonhomologous end joining repair (NHEJ) and nucleotide excision repair. Mutations that suppressed rapid recruitment of p53 promoted error-prone alternative end- joining (alt-NHEJ) and inhibited nucleotide excision repair. Our finding that p53 is a critical early responder to DNA damage stands in contrast with its extensively studied role as a downstream transcriptional regulator in DNA damage repair. We highlight an unrecognized role of p53 in directing DNA repair dynamics and integrity and suggest a parallel mode of p53 tumor suppression apart from its function as a transcription factor. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
119
Issue :
10
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
155743723
Full Text :
https://doi.org/10.1073/pnas.2113233119