Back to Search
Start Over
Accuracy of Additively Manufactured and Milled Interim 3‐Unit Fixed Dental Prostheses.
- Source :
- Journal of Prosthodontics; Mar2022 Suppllement S1, Vol. 31, p58-69, 12p
- Publication Year :
- 2022
-
Abstract
- Purpose: To investigate the accuracy of additive manufacturing (AM) by means of internal fit of fixed dental prostheses (FDPs) fabricated with two AM technologies using different resins and printing modes (validated vs nonvalidated) compared to milling and direct manual methods. Material and methods: Sixty 3‐unit interim FDPs replacing the first mandibular molar were divided into 6 groups (n = 10): manual (Protemp 4), milled (Telio‐CAD), and AM groups were subdivided based on AM technology (direct light processing (Rapidshape P30 [RS]) and stereolithography (FormLabs 2 [FL])) and the polymer type (P‐Pro‐C&B [St] and SHERAprint‐cb [Sh]) (RS‐St, RS‐Sh, FL‐St, FL‐Sh). Validated (RS‐Sh and RS‐St) or nonvalidated (FL‐St and FL‐Sh) modes were adopted for AM. The specimens were scanned to 3D align (GOM inspect) according to the triple scan method. The internal space between the FDPs and preparation surfaces in four sites (marginal, axial, occlusal, and total) was measured using equidistant surface points (GOM Inspect). Statistical analysis was done using Kruskal Wallis and Dunn post‐hoc tests. (α = 0.05). Results: One AM group (FL‐Sh) and milling exhibited better adaptation compared to manual and RS‐St at molar site (p < 0.05). FDPs with St resin (FL‐St and RS‐St) displayed bigger marginal space than milled, FL‐Sh, and RS‐Sh. The nonvalidated printing mode showed better mean space results (p < 0.05) with higher predictability and repeatability (p < 0.001). Conclusions: The AM interim FDPs tested provided valid alternatives to the milled ones in regard to their accuracy results. The printing mode, resin, and the AM technology used significantly influenced the manufacturing accuracy of interim FDPs, particularly at the marginal area. The nonvalidated printing mode with lower‐cost 3D printers is a promising solution for clinical applications. [ABSTRACT FROM AUTHOR]
- Subjects :
- DENTURES
3-D printers
CLINICAL medicine
STEREOLITHOGRAPHY
THREE-dimensional printing
Subjects
Details
- Language :
- English
- ISSN :
- 1059941X
- Volume :
- 31
- Database :
- Complementary Index
- Journal :
- Journal of Prosthodontics
- Publication Type :
- Academic Journal
- Accession number :
- 155864256
- Full Text :
- https://doi.org/10.1111/jopr.13454