Back to Search Start Over

Microbiomes in the Challenger Deep slope and bottom-axis sediments.

Authors :
Zhou, Ying-Li
Mara, Paraskevi
Cui, Guo-Jie
Edgcomb, Virginia P.
Wang, Yong
Source :
Nature Communications; 3/21/2022, Vol. 13 Issue 1, p1-13, 13p
Publication Year :
2022

Abstract

Hadal trenches are the deepest and most remote regions of the ocean. The 11-kilometer deep Challenger Deep is the least explored due to the technical challenges of sampling hadal depths. It receives organic matter and heavy metals from the overlying water column that accumulate differently across its V-shaped topography. Here, we collected sediments across the slope and bottom-axis of the Challenger Deep that enable insights into its in situ microbial communities. Analyses of 586 metagenome-assembled genomes retrieved from 37 metagenomes show distinct diversity and metabolic capacities between bottom-axis and slope sites. 26% of prokaryotic 16S rDNA reads in metagenomes were novel, with novelty increasing with water and sediment depths. These predominantly heterotrophic microbes can recycle macromolecules and utilize simple and complex hydrocarbons as carbon sources. Metagenome and metatranscriptome data support reduction and biotransformation of arsenate for energy gain in sediments that present a two-fold greater accumulation of arsenic compared to non-hadal sites. Complete pathways for anaerobic ammonia oxidation are predominantly identified in genomes recovered from bottom-axis sediments compared to slope sites. Our results expand knowledge of microbially-mediated elemental cycling in hadal sediments, and reveal differences in distribution of processes involved in nitrogen loss across the trench. The V-shaped Challenger Deep in the Mariana Trench is the deepest part of the world's oceans. Using 586 prokaryotic metagenome-assembled genomes and metatranscriptomic data, this study explores metabolic capabilities and activities of microorganisms involved in elemental cycling in hadal sediments, and reveals the different distribution of processes between its bottom-axis and slope. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
155888449
Full Text :
https://doi.org/10.1038/s41467-022-29144-4