Back to Search Start Over

Analysis of Precise Orbit Determination for the HY2D Satellite Using Onboard GPS/BDS Observations.

Authors :
Peng, Hailong
Zhou, Chongchong
Zhong, Shiming
Peng, Bibo
Zhou, Xuhua
Yan, Haoming
Zhang, Jie
Han, Jinyang
Guo, Fengcheng
Chen, Runjing
Source :
Remote Sensing; Mar2022, Vol. 14 Issue 6, p1390, 15p
Publication Year :
2022

Abstract

High-precision orbits of Low Earth Orbit (LEO) satellites are essential for many scientific applications, such as assessing the change in current global mean sea level, estimating the coefficients of gravity field, and so on. How to determinate the high-precision orbits for LEO satellites has gradually become an important research focus. HY2D is a new altimetry satellite of China, which is equipped with a Global Positioning System (GPS) and the third generations of the BeiDou Global Navigation Satellite System (BDS-3) in order to guarantee the reliability of orbital precision in radar altimetry mission. Therefore, this study adopts one month of spaceborne data to conduct the research of precise orbit determination (POD) for the HY2D satellite. Our analysis results are: (1) The standard deviation of residuals for the HY2D satellite based on spaceborne BDS and GPS data are 9.12 mm and 8.53 mm, respectively, and there are no significant systematic errors in these residuals. (2) The comparison results with Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS)-derived orbits indicate that the HY2D satellite, using spaceborne BDS and GPS data, can achieve the radial accuracy of 1.4~1.5 cm, and the mean three-dimensional (3D) accuracy are 5.3 cm and 4.3 cm, respectively, which can satisfy high-precision altimetry applications. (3) By means of satellite laser ranging (SLR), the accuracy of Global Navigation Satellite System (GNSS)-derived orbits of HY2D is approximately 3.3 cm, which reflects that the model strategies are reliable. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
6
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
156094622
Full Text :
https://doi.org/10.3390/rs14061390