Back to Search Start Over

Excitation of Surface Plasmon Polariton Modes with Double-Layer Gratings of Graphene.

Authors :
Liu, Jianping
Wang, Weilin
Xie, Fang
Zhang, Xiaoming
Zhou, Xia
Yuan, Yijun
Wang, Lingling
Source :
Nanomaterials (2079-4991); Apr2022, Vol. 12 Issue 7, p1144-1144, 14p
Publication Year :
2022

Abstract

A long-range surface plasmon polariton (SPP) waveguide, composed of double-layer graphene, can be pivotal in transferring and handling mid-infrared electromagnetic waves. However, one of the key challenges for this type of waveguide is how to excite the SPP modes through an incident light beam. In this study, our proposed design of a novel grating, consisting of a graphene-based cylindrical long-range SPP waveguide array, successfully addresses this issue using finite-difference time-domain simulations. The results show that two types of symmetric coupling modes (SCMs) are excited through a normal incident light. The transmission characteristics of the two SCMs can be manipulated by changing the interaction of the double-layer gratings of graphene as well as by varying various parameters of the device. Similarly, four SCMs can be excited and controlled by an oblique incident light because this light source is equivalent to two orthogonal beams of light. Furthermore, this grating can be utilized in the fabrication of mid-infrared optical devices, such as filters and refractive index sensors. This grating, with double-layer graphene arrays, has the potential to excite and manipulate the mid-infrared electromagnetic waves in future photonic integrated circuits. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
7
Database :
Complementary Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
156325211
Full Text :
https://doi.org/10.3390/nano12071144