Back to Search Start Over

Evaluation of Ocean Color Atmospheric Correction Methods for Sentinel-3 OLCI Using Global Automatic In Situ Observations.

Authors :
Liu, Huizeng
He, Xianqiang
Li, Qingquan
Hu, Xianjun
Ishizaka, Joji
Kratzer, Susanne
Yang, Chao
Shi, Tiezhu
Hu, Shuibo
Zhou, Qiming
Wu, Guofeng
Source :
IEEE Transactions on Geoscience & Remote Sensing; Apr2022, Vol. 60, p1-19, 19p
Publication Year :
2022

Abstract

The Ocean and Land Color Instrument (OLCI) on Sentinel-3 is one of the most advanced ocean color satellite sensors for aquatic environment monitoring. However, limited studies have been focused on a comprehensive assessment of atmospheric correction (AC) methods for OLCI. In an attempt to fill the gap, this study evaluated seven different AC methods for OLCI using global automatic in situ observations from Aerosol Robotic Network-Ocean Color (AERONET-OC). Results showed that the POLYnomial-based algorithm applied to MERIS (POLYMER) had the best performance for bands with wavelength ≤ 443 nm, and the SeaDAS method based on 779 and 865 nm was the best for longer spectral bands; however, SeaDAS (SeaWiFS Data Analysis System) processing algorithm based on 779 and 1020 nm, as well as 865 and 1020 nm, obtained degraded AC performance; Case 2 Regional CoastColor (C2RCC) also produced large uncertainties; Baseline AC (BAC) method might be better than SeaDAS method; and simple subtraction method was the worst except for turbid waters. POLYMER and C2RCC underestimated high remote sensing reflectance (Rrs) at red and green bands; SeaDAS method based on 779 and 865 nm held an advantage for clear waters over the other two band combinations, while their difference turned small for turbid waters. AC uncertainties generally impacted the performance of chlorophyll retrievals. POLYMER outperformed other methods for chlorophyll retrieval. This study provides a good reference for selecting a suitable AC method for aquatic environment monitoring with Sentinel-3 OLCI. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
60
Database :
Complementary Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
156372368
Full Text :
https://doi.org/10.1109/TGRS.2021.3136243