Back to Search Start Over

Molecular Doping Increases the Semitransparent Photovoltaic Performance of Dilute Bulk Heterojunction Film with Discontinuous Polymer Donor Networks.

Authors :
Tang, Yabing
Zheng, Hong
Zhou, Xiaobo
Tang, Zheng
Ma, Wei
Yan, Han
Source :
Small Methods; Apr2022, Vol. 6 Issue 4, p1-9, 9p
Publication Year :
2022

Abstract

The semitransparent and colorful properties of organic solar cells (OSCs) attract intensive academic interests due to their potential application in building integrated photovoltaics, wearable electronics, and so forth. The most straightforward and effective method to tune these optical properties is varying the componential ratio in the blend film. However, the increase in device transmittance inevitably sacrifices the photovoltaic performance because of severe carrier recombination that originates from discontinuous charge‐transport networks in the blend film. Herein, a strategy is proposed via the molecular‐doping strategy to overcome these shortcomings. It is discovered that p‐doping is able to release the trapped holes in segregated polymer domains leading to short‐circuit current enhancement, while n‐doping is more effective to fill the bandgap states producing a higher fill factor. More importantly, either type of doping improves the photovoltaic performance in the semitransparent photovoltaic devices. These discoveries provide a new pathway to breaking the compromise between the photovoltaic performance and optical transmittance in semitransparent OSCs, and hold promise for their future commercialization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23669608
Volume :
6
Issue :
4
Database :
Complementary Index
Journal :
Small Methods
Publication Type :
Academic Journal
Accession number :
156379411
Full Text :
https://doi.org/10.1002/smtd.202101570