Back to Search Start Over

Machine learning-based in-hospital mortality prediction of HIV/AIDS patients with Talaromyces marneffei infection in Guangxi, China.

Authors :
Shi, Minjuan
Lin, Jianyan
Wei, Wudi
Qin, Yaqin
Meng, Sirun
Chen, Xiaoyu
Li, Yueqi
Chen, Rongfeng
Yuan, Zongxiang
Qin, Yingmei
Huang, Jiegang
Liang, Bingyu
Liao, Yanyan
Ye, Li
Liang, Hao
Xie, Zhiman
Jiang, Junjun
Source :
PLoS Neglected Tropical Diseases; 5/4/2022, Vol. 16 Issue 5, p1-18, 18p
Publication Year :
2022

Abstract

Objective: Talaromycosis is a serious regional disease endemic in Southeast Asia. In China, Talaromyces marneffei (T. marneffei) infections is mainly concentrated in the southern region, especially in Guangxi, and cause considerable in-hospital mortality in HIV-infected individuals. Currently, the factors that influence in-hospital death of HIV/AIDS patients with T. marneffei infection are not completely clear. Existing machine learning techniques can be used to develop a predictive model to identify relevant prognostic factors to predict death and appears to be essential to reducing in-hospital mortality. Methods: We prospectively enrolled HIV/AIDS patients with talaromycosis in the Fourth People's Hospital of Nanning, Guangxi, from January 2012 to June 2019. Clinical features were selected and used to train four different machine learning models (logistic regression, XGBoost, KNN, and SVM) to predict the treatment outcome of hospitalized patients, and 30% internal validation was used to evaluate the performance of models. Machine learning model performance was assessed according to a range of learning metrics, including area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanations (SHAP) tool was used to explain the model. Results: A total of 1927 HIV/AIDS patients with T. marneffei infection were included. The average in-hospital mortality rate was 13.3% (256/1927) from 2012 to 2019. The most common complications/coinfections were pneumonia (68.9%), followed by oral candida (47.5%), and tuberculosis (40.6%). Deceased patients showed higher CD4/CD8 ratios, aspartate aminotransferase (AST) levels, creatinine levels, urea levels, uric acid (UA) levels, lactate dehydrogenase (LDH) levels, total bilirubin levels, creatine kinase levels, white blood-cell counts (WBC) counts, neutrophil counts, procaicltonin levels and C-reactive protein (CRP) levels and lower CD3<superscript>+</superscript> T-cell count, CD8<superscript>+</superscript> T-cell count, and lymphocyte counts, platelet (PLT), high-density lipoprotein cholesterol (HDL), hemoglobin (Hb) levels than those of surviving patients. The predictive XGBoost model exhibited 0.71 sensitivity, 0.99 specificity, and 0.97 AUC in the training dataset, and our outcome prediction model provided robust discrimination in the testing dataset, showing an AUC of 0.90 with 0.69 sensitivity and 0.96 specificity. The other three models were ruled out due to poor performance. Septic shock and respiratory failure were the most important predictive features, followed by uric acid, urea, platelets, and the AST/ALT ratios. Conclusion: The XGBoost machine learning model is a good predictor in the hospitalization outcome of HIV/AIDS patients with T. marneffei infection. The model may have potential application in mortality prediction and high-risk factor identification in the talaromycosis population. Author summary: Talaromyces marneffei can cause a fatal deeply disseminated fungal infection- talaromycosis. It is widely distributed in Southeast Asia and spreading globally, the disease is insidious and responsible for significant deaths. Clinicians need easy-to-use tools to make decisions on which patients are at a higher risk of dying after infecting T. marneffei. In this study, conducted in Southern China, we have evolved XGBoost machine learning model. 15 clinical indicators and laboratory measures were used to estimate a patient's risk of dying in the hospital due to the T. marneffei infection. The study showed that the machine learning model has good predictive ability when tested in an internal testing population of patients. We expect that the model could help clinicians assess a patient's risk of death in just the time of admission to help decide on early treatment timing of high-risk patients who are likely to die. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19352727
Volume :
16
Issue :
5
Database :
Complementary Index
Journal :
PLoS Neglected Tropical Diseases
Publication Type :
Academic Journal
Accession number :
156677774
Full Text :
https://doi.org/10.1371/journal.pntd.0010388