Back to Search Start Over

Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase.

Authors :
Sun, Zuodong
Jamieson, Cooper S.
Ohashi, Masao
Houk, K. N.
Tang, Yi
Source :
Nature Communications; 5/11/2022, Vol. 13 Issue 1, p1-12, 12p
Publication Year :
2022

Abstract

Pericyclases, enzymes that catalyze pericyclic reactions, form an expanding family of enzymes that have biocatalytic utility. Despite the increasing number of pericyclases discovered, the Diels-Alder cyclization between a cyclopentadiene and an olefinic dienophile to form norbornene, which is among the best-studied cycloadditions in synthetic chemistry, has surprisingly no enzymatic counterpart to date. Here we report the discovery of a pathway featuring a norbornene synthase SdnG for the biosynthesis of sordaricin-the terpene precursor of antifungal natural product sordarin. Full reconstitution of sordaricin biosynthesis reveals a concise oxidative strategy used by Nature to transform an entirely hydrocarbon precursor into the highly functionalized substrate of SdnG for intramolecular Diels-Alder cycloaddition. SdnG generates the norbornene core of sordaricin and accelerates this reaction to suppress host-mediated redox modifications of the activated dienophile. Findings from this work expand the scopes of pericyclase-catalyzed reactions and P450-mediated terpene maturation. Pericyclase enzymes are an expanding family of enzymes. Here, the authors identify the norbornene synthase SdnG, a pericyclase for the intramolecular Diels-Alder reaction between a cyclopentadiene and an olefinic dienophile to form the sordaricin norbornene structure, and reconstitute the sordaricin biosynthesis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
156802522
Full Text :
https://doi.org/10.1038/s41467-022-30288-6