Back to Search Start Over

Facial Micro-Expression Recognition Based on Deep Local-Holistic Network.

Authors :
Li, Jingting
Wang, Ting
Wang, Su-Jing
Source :
Applied Sciences (2076-3417); May2022, Vol. 12 Issue 9, pN.PAG-N.PAG, 17p
Publication Year :
2022

Abstract

A micro-expression is a subtle, local and brief facial movement. It can reveal the genuine emotions that a person tries to conceal and is considered an important clue for lie detection. The micro-expression research has attracted much attention due to its promising applications in various fields. However, due to the short duration and low intensity of micro-expression movements, micro-expression recognition faces great challenges, and the accuracy still demands improvement. To improve the efficiency of micro-expression feature extraction, inspired by the psychological study of attentional resource allocation for micro-expression cognition, we propose a deep local-holistic network method for micro-expression recognition. Our proposed algorithm consists of two sub-networks. The first is a Hierarchical Convolutional Recurrent Neural Network (HCRNN), which extracts the local and abundant spatio-temporal micro-expression features. The second is a Robust principal-component-analysis-based recurrent neural network (RPRNN), which extracts global and sparse features with micro-expression-specific representations. The extracted effective features are employed for micro-expression recognition through the fusion of sub-networks. We evaluate the proposed method on combined databases consisting of the four most commonly used databases, i.e., CASME, CASME II, CAS(ME) 2 , and SAMM. The experimental results show that our method achieves a reasonably good performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
9
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
156850402
Full Text :
https://doi.org/10.3390/app12094643