Back to Search
Start Over
A Strategic Pathway from Cell to Pack-Level Battery Lifetime Model Development.
- Source :
- Applied Sciences (2076-3417); May2022, Vol. 12 Issue 9, pN.PAG-N.PAG, 17p
- Publication Year :
- 2022
-
Abstract
- Featured Application: The research outcome would serve as a guideline for developing the comprehensive battery pack lifetime model from cell-level validated models. The proposed framework can be adopted in the battery management system with the potential to enhance performance, lifetime, reliability, and safety. The automotive energy storage market is currently dominated by the existing Li-ion technologies that are likely to continue in the future. Thus, the on-road electric (and hybrid) vehicles running on the Li-ion battery systems require critical diagnosis considering crucial battery aging. This work aims to provide a guideline for pack-level lifetime model development that could facilitate battery maintenance, ensuring a safe and reliable operational lifespan. The first of the twofold approach is a cell-level empirical lifetime model that is developed from a lab-level aging dataset of commercial LTO cells. The model is validated with an exhaustive sub-urban realistic driving cycle yielding a root-mean-square error of 0.45. The model is then extended to a 144S1P modular architecture for pack-level simulation. The second step provides the pack electro-thermal simulation results that are upscaled from a cell-level and validated 1D electrical model coupled with a 3D thermal model. The combined simulation framework is online applicable and considers the relevant aspects into account in predicting the battery system's lifetime that results in over 350,000 km of suburban driving. This robust tool is a collaborative research outcome from two Horizon2020 EU projects—GHOST and Vision xEV, showcasing outstanding cell-level battery modeling accuracies. [ABSTRACT FROM AUTHOR]
- Subjects :
- BATTERY management systems
LITHIUM-ion batteries
Subjects
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 12
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 156850540
- Full Text :
- https://doi.org/10.3390/app12094781