Back to Search
Start Over
Phase Transitions of Cu and Fe at Multiscales in an Additively Manufactured Cu–Fe Alloy under High-Pressure.
- Source :
- Nanomaterials (2079-4991); May2022, Vol. 12 Issue 9, p1514-1514, 21p
- Publication Year :
- 2022
-
Abstract
- A state of the art, custom-built direct-metal deposition (DMD)-based additive manufacturing (AM) system at the University of Michigan was used to manufacture 50Cu–50Fe alloy with tailored properties for use in high strain/deformation environments. Subsequently, we performed preliminary high-pressure compression experiments to investigate the structural stability and deformation of this material. Our work shows that the alpha (BCC) phase of Fe is stable up to ~16 GPa before reversibly transforming to HCP, which is at least a few GPa higher than pure bulk Fe material. Furthermore, we observed evidence of a transition of Cu nano-precipitates in Fe from the well-known FCC structure to a metastable BCC phase, which has only been predicted via density functional calculations. Finally, the metastable FCC Fe nano-precipitates within the Cu grains show a modulated nano-twinned structure induced by high-pressure deformation. The results from this work demonstrate the opportunity in AM application for tailored functional materials and extreme stress/deformation applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20794991
- Volume :
- 12
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Nanomaterials (2079-4991)
- Publication Type :
- Academic Journal
- Accession number :
- 156875423
- Full Text :
- https://doi.org/10.3390/nano12091514