Back to Search Start Over

Neuroplasticity-Based Pruning Method for Deep Convolutional Neural Networks.

Authors :
Camacho, Jose David
VillaseƱor, Carlos
Lopez-Franco, Carlos
Arana-Daniel, Nancy
Source :
Applied Sciences (2076-3417); May2022, Vol. 12 Issue 10, p4945, 27p
Publication Year :
2022

Abstract

In this paper, a new pruning strategy based on the neuroplasticity of biological neural networks is presented. The novel pruning algorithm proposed is inspired by the knowledge remapping ability after injuries in the cerebral cortex. Thus, it is proposed to simulate induced injuries into the network by pruning full convolutional layers or entire blocks, assuming that the knowledge from the removed segments of the network may be remapped and compressed during the recovery (retraining) process. To reconnect the remaining segments of the network, a translator block is introduced. The translator is composed of a pooling layer and a convolutional layer. The pooling layer is optional and placed to ensure that the spatial dimension of the feature maps matches across the pruned segments. After that, a convolutional layer (simulating the intact cortex) is placed to ensure that the depth of the feature maps matches and is used to remap the removed knowledge. As a result, lightweight, efficient and accurate sub-networks are created from the base models. Comparison analysis shows that in our approach is not necessary to define a threshold or metric as the criterion to prune the network in contrast to other pruning methods. Instead, only the origin and destination of the prune and reconnection points must be determined for the translator connection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
10
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
157129558
Full Text :
https://doi.org/10.3390/app12104945