Back to Search Start Over

Robust Guidance for a Reusable Launch Vehicle in Terminal Phase.

Authors :
Mu, Lingxia
Xie, Guo
Yu, Xiang
Wang, Ban
Zhang, Youmin
Source :
IEEE Transactions on Aerospace & Electronic Systems; Jun2022, Vol. 58 Issue 3, p1996-2011, 16p
Publication Year :
2022

Abstract

This article focuses on the 3-D guidance strategy for a reusable launch vehicle (RLV) during terminal area energy management (TAEM) phase. Based on sliding-mode and shrinking-horizon techniques, the proposed scheme consists of trajectory generation and correction mechanisms, which can enhance the guidance precision and robustness against disturbances. The RLV guidance model, in the form of a set of highly nonlinear differential equations in the time domain, is recast as an altitude-domain model. By this means, the main characteristics of TAEM gliding motion are extracted. The altitude-domain model is thereby used for trajectory generation. A sliding surface and a guidance law are proposed. Hybrid TAEM constraints can be fully satisfied when the proposed guidance law drives the altitude-domain vehicle model to the designated altitude. Using the proposed guidance law as the input of the altitude-domain model, a constrained TAEM trajectory is generated, leading to TAEM guidance commands simultaneously. The commands are utilized to drive the time-domain model to the terminal target. In an attempt to compensate for model uncertainties and initial deviations, the guidance commands are modified periodically by the shrinking-horizon correction mechanism according to current states. Simulations on different scenarios are provided to demonstrate the performance of the proposed guidance strategy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189251
Volume :
58
Issue :
3
Database :
Complementary Index
Journal :
IEEE Transactions on Aerospace & Electronic Systems
Publication Type :
Academic Journal
Accession number :
157325810
Full Text :
https://doi.org/10.1109/TAES.2021.3126567