Back to Search Start Over

Ucl fimbriae regulation and glycan receptor specificity contribute to gut colonisation by extra-intestinal pathogenic Escherichia coli.

Authors :
Hancock, Steven J.
Lo, Alvin W.
Ve, Thomas
Day, Christopher J.
Tan, Lendl
Mendez, Alejandra A.
Phan, Minh-Duy
Nhu, Nguyen Thi Khanh
Peters, Kate M.
Richards, Amanda C.
Fleming, Brittany A.
Chang, Chyden
Ngu, Dalton H. Y.
Forde, Brian M.
Haselhorst, Thomas
Goh, Kelvin G. K.
Beatson, Scott A.
Jennings, Michael P.
Mulvey, Matthew A.
Kobe, Bostjan
Source :
PLoS Pathogens; 6/14/2022, Vol. 18 Issue 6, p1-24, 24p
Publication Year :
2022

Abstract

Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics. Author summary: ExPEC infection of the urinary tract and bloodstream is frequently seeded from an intestinal reservoir, necessitating an understanding of the mechanisms that promote gut colonisation. Here we employed molecular and structural approaches to define the regulation and function of ExPEC Ucl fimbriae as a gut colonisation factor. We describe how mutations in the non-coding regulatory region of the ucl promoter cause increased Ucl fimbriae expression and promote enhanced gut colonisation via tuned induction by a global regulator that senses oxygen stress. We further define the glycan receptor targets of Ucl fimbriae and characterise the structural features of the Ucl adhesin that facilitate these interactions. These findings explain how ExPEC can adapt to survival in the gut to seed extra-intestinal infection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537366
Volume :
18
Issue :
6
Database :
Complementary Index
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
157442966
Full Text :
https://doi.org/10.1371/journal.ppat.1010582