Back to Search Start Over

Repression of HIV-1 reactivation mediated by CRISPR/dCas9-KRAB in lymphoid and myeloid cell models.

Authors :
da Costa, Lendel Correia
Bomfim, Larissa Maciel
Dittz, Uilla Victoria Torres
Velozo, Camila de Almeida
da Cunha, Rodrigo Delvecchio
Tanuri, Amilcar
Source :
Retrovirology; 6/22/2022, Vol. 19 Issue 1, p1-10, 10p
Publication Year :
2022

Abstract

Background: Despite antiretroviral treatment efficacy, it does not lead to the complete eradication of HIV infection. Consequently, reactivation of the virus from latently infected cell reservoirs is a major challenge toward cure efforts. Two strategies targeting viral latency are currently under investigation: the "shock and kill" and the "block and lock." The "Block and Lock" methodology aims to control HIV-1 latency reactivation, promoting a functional cure. We utilized the CRISPR/dCas9-KRAB platform, which was initially developed to suppress cellular genes transcription, to block drug-induced HIV-1 reactivation in latently infected T cells and myeloid cells. Results: We identified a set of five sgRNAs targeting the HIV-1 proviral genome (LTR1-LTR5), having the lowest nominated off-target activity, and transduced them into the latently infected lymphoid (J-Lat 10.6) and myeloid (U1) cell lines. One of the sgRNAs (LTR5), which binds specifically in the HIV-1 LTR NFκB binding site, was able to promote robust repression of HIV-1 reactivation in latently infected T cells stimulated with Phorbol 12-Myristate 13-Acetate (PMA) and Ingenol B (IngB), both potent protein kinase C (PKC) stimulators. Reactivation with HDAC inhibitors, such as SAHA and Panobinostat, showed the same strong inhibition of reactivation. Additionally, we observed a hundred times reduction of HIV-1 RNA expression levels in the latently infected myeloid cell line, U1 induced with IngB. Conclusion: Taken together, our results show that the KRAB fused CRISPR/dCas9 system can robustly prevent the HIV-1 latency reactivation process, mediated by PMA or IngB and SAHA or Panobinostat, both in myeloid and lymphoid HIV-1 latently infected cells. In addition, we demonstrated that KRAB repressor protein is crucial to reactivation resistance phenotype, and we have identified some useful hotspots sequences in HIV-1 LTR for the design sgRNAs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17424690
Volume :
19
Issue :
1
Database :
Complementary Index
Journal :
Retrovirology
Publication Type :
Academic Journal
Accession number :
157586298
Full Text :
https://doi.org/10.1186/s12977-022-00600-9