Back to Search Start Over

A Convex Relaxation Approach for Learning the Robust Koopman Operator.

Authors :
Su, Yong
Jin, Jiawei
Peng, Weilong
Tang, Keke
Khan, Asad
An, Simin
Xing, Meng
Source :
Wireless Communications & Mobile Computing; 6/28/2022, p1-11, 11p
Publication Year :
2022

Abstract

Although data-driven models, especially deep learning, have achieved astonishing results on many prediction tasks for nonlinear sequences, challenges still remain in finding an appropriate way to embed prior knowledge of physical dynamics in these models. In this work, we introduce a convex relaxation approach for learning robust Koopman operators of nonlinear dynamical systems, which are intended to construct approximate space spanned by eigenfunctions of the Koopman operator. Different from the classical dynamic mode decomposition, we use the layer weights of neural networks as eigenfunctions of the Koopman operator, providing intrinsic coordinates that globally linearize the dynamics. We find that the approximation of space can be regarded as an orthogonal Procrustes problem on the Stiefel manifold, which is highly sensitive to noise. The key contribution of this paper is to demonstrate that strict orthogonal constraint can be replaced by its convex relaxation, and the performance of the model can be improved without increasing the complexity when dealing with both clean and noisy data. After that, the overall model can be optimized via backpropagation in an end-to-end manner. The comparisons of the proposed method against several state-of-the-art competitors are shown on nonlinear oscillators and the lid-driven cavity flow. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15308669
Database :
Complementary Index
Journal :
Wireless Communications & Mobile Computing
Publication Type :
Academic Journal
Accession number :
157685700
Full Text :
https://doi.org/10.1155/2022/5010251