Back to Search Start Over

A Lateral and Longitudinal Dynamics Control Framework of Autonomous Vehicles Based on Multi-Parameter Joint Estimation.

Authors :
Qin, Zhaobo
Chen, Liang
Hu, Manjiang
Chen, Xin
Source :
IEEE Transactions on Vehicular Technology; Jun2022, Vol. 71 Issue 6, p5837-5852, 16p
Publication Year :
2022

Abstract

In order to improve the trajectory tracking accuracy and vehicle lateral stability, the paper proposes a lateral and longitudinal dynamics control framework of autonomous vehicles considering multi-parameter joint estimation. First, the multi-parameter joint estimation based on adaptive unscented Kalman filter (AUKF) is constructed to decouple and estimate the longitudinal position of vehicle's center of gravity (CG), tire-road friction coefficient (TRFC), tire cornering stiffness (TCS), tire vertical force (TVF) and road grade. Then, focusing on the large lateral acceleration condition, a lateral control based on the optimal front-tire lateral force is proposed by constructing the linear quadratic regulator (LQR) and combining the multi-parameter joint estimation. Additionally, a longitudinal control based on the drive and brake force compensation to realize the accurate speed tracking by combining road slop estimation is achieved. The fuzzy system employs the drive and brake force deviation as the input to implement the compensation of the throttle and brake. The proposed estimation and control framework are verified by co-simulation on PreScan and CarSim preliminarily. In order to further verify the effectiveness and practicability of algorithm, experiments are implemented on an autonomous vehicle platform, a hybrid Lincoln MKZ. Simulation and experimental results show that the proposed estimation and control framework possess excellent performance and enhance the tracking accuracy and lateral stability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
71
Issue :
6
Database :
Complementary Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
157687975
Full Text :
https://doi.org/10.1109/TVT.2022.3163507