Back to Search Start Over

Antennal Transcriptome Analysis and Identification of Olfactory Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae).

Authors :
Wu, Guanxin
Su, Ranran
Ouyang, Huili
Zheng, Xialin
Lu, Wen
Wang, Xiaoyun
Source :
Insects (2075-4450); Jun2022, Vol. 13 Issue 6, p553, 15p
Publication Year :
2022

Abstract

Simple Summary: In this study, we conducted antennal transcriptome analysis in Glenea cantor (Cerambycidae: Lamiinae) and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level. Glenea cantor Fabricius (Cerambycidae: Lamiinae) is a pest that devastates urban landscapes and causes ecological loss in southern China and Southeast Asian countries where its main host kapok trees are planted. The olfactory system plays a vital role in mating, foraging, and spawning in G. cantor as an ideal target for pest control. However, the olfactory mechanism of G. cantor is poorly understood at the molecular level. In this study, we first established the antennal transcriptome of G. cantor and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). Furthermore, the phylogenetic trees of olfactory genes were constructed to study the homology with other species of insects. We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754450
Volume :
13
Issue :
6
Database :
Complementary Index
Journal :
Insects (2075-4450)
Publication Type :
Academic Journal
Accession number :
157765260
Full Text :
https://doi.org/10.3390/insects13060553