Back to Search Start Over

Machine learning approaches reveal subtle differences in breathing and sleep fragmentation in Phox2b-derived astrocytes ablated mice.

Authors :
Silva, Talita M.
Borniger, Jeremy C.
Alves, Michele Joana
Correa, Diego Alzate
Jing Zhao
Fadda, Paolo
Toland, Amanda Ewart
Takakura, Ana C.
Moreira, Thiago S.
Czeisler, Catherine M.
Otero, Jose Javier
Source :
Journal of Neurophysiology; Apr2021, Vol. 125 Issue 4, p1164-1179, 16p
Publication Year :
2021

Abstract

Modern neurophysiology research requires the interrogation of high-dimensionality data sets. Machine learning and artificial intelligence (ML/AI) workflows have permeated into nearly all aspects of daily life in the developed world but have not been implemented routinely in neurophysiological analyses. The power of these workflows includes the speed at which they can be deployed, their availability of open-source programming languages, and the objectivity permitted in their data analysis. We used classification-based algorithms, including random forest, gradient boosted machines, support vector machines, and neural networks, to test the hypothesis that the animal genotypes could be separated into their genotype based on interpretation of neurophysiological recordings. We then interrogate the models to identify what were the major features utilized by the algorithms to designate genotype classification. By using raw EEG and respiratory plethysmography data, we were able to predict which recordings came from genotype class with accuracies that were significantly improved relative to the no information rate, although EEG analyses showed more overlap between groups than respiratory plethysmography. In comparison, conventional methods where single features between animal classes were analyzed, differences between the genotypes tested using baseline neurophysiology measurements showed no statistical difference. However, ML/AI workflows successfully were capable of providing successful classification, indicating that interactions between features were different in these genotypes. ML/AI workflows provide new methodologies to interrogate neurophysiology data. However, their implementation must be done with care so as to provide high rigor and reproducibility between laboratories. We provide a series of recommendations on how to report the utilization of ML/AI workflows for the neurophysiology community. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223077
Volume :
125
Issue :
4
Database :
Complementary Index
Journal :
Journal of Neurophysiology
Publication Type :
Academic Journal
Accession number :
158082468
Full Text :
https://doi.org/10.1152/jn.00155.2020