Back to Search
Start Over
Proximal Gradient Algorithms Under Local Lipschitz Gradient Continuity: A Convergence and Robustness Analysis of PANOC.
- Source :
- Journal of Optimization Theory & Applications; Sep2022, Vol. 194 Issue 3, p771-794, 24p
- Publication Year :
- 2022
-
Abstract
- Composite optimization offers a powerful modeling tool for a variety of applications and is often numerically solved by means of proximal gradient methods. In this paper, we consider fully nonconvex composite problems under only local Lipschitz gradient continuity for the smooth part of the objective function. We investigate an adaptive scheme for PANOC-type methods (Stella et al. in Proceedings of the IEEE 56th CDC, 2017), namely accelerated linesearch algorithms requiring only the simple oracle of proximal gradient. While including the classical proximal gradient method, our theoretical results cover a broader class of algorithms and provide convergence guarantees for accelerated methods with possibly inexact computation of the proximal mapping. These findings have also significant practical impact, as they widen scope and performance of existing, and possibly future, general purpose optimization software that invoke PANOC as inner solver. [ABSTRACT FROM AUTHOR]
- Subjects :
- LIPSCHITZ continuity
ALGORITHMS
NONSMOOTH optimization
PARTICLE swarm optimization
Subjects
Details
- Language :
- English
- ISSN :
- 00223239
- Volume :
- 194
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Journal of Optimization Theory & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 158178950
- Full Text :
- https://doi.org/10.1007/s10957-022-02048-5