Back to Search Start Over

The role of Collembola for litter decomposition under minimum and conventional tillage.

Authors :
Hanisch, Jörg
Engell, Ilka
Linsler, Deborah
Scheu, Stefan
Potthoff, Martin
Source :
Journal of Plant Nutrition & Soil Science; Aug2022, Vol. 185 Issue 4, p529-538, 10p
Publication Year :
2022

Abstract

Background: The role of soil mesofauna in decomposition processes still is debated and this applies in particular to arable systems. Aim: This study investigates the role of Collembola in decomposition processes of crop residues in two different tillage systems. Methods: We conducted a litterbag experiment in a long‐term field site in Germany managed by conventional tillage (CT; mouldboard ploughing) and minimum tillage (MT). Litterbags filled with maize leaf litter of two mesh sizes (2 mm and 48 μm) were used. Litterbags were buried at 23 cm (CT) and 5–8 cm (MT), and retrieved after 2, 5 and 7 months. Litter mass, concentrations of carbon and nitrogen, litter C/N ratio as well as the abundance and community structure of Collembola and the incorporation of maize‐derived carbon into Collembola were investigated. Results: Mesofauna enhanced the loss of litter carbon, while litter mass loss was reduced. Litter C/N ratio in MT was generally lower than that in CT and decreased faster in litterbags with coarse mesh size. Abundance of Collembola in litterbags in CT exceeded that in MT, but species composition remained unaffected by tillage. Overall, Collembola effectively colonised the litter irrespective of tillage system, but benefited in particular from translocation deeper into the soil by conventional tillage. Conclusions: Mesofauna accelerates litter carbon loss and increases litter nitrogen accumulation irrespective of tillage system. This may reduce nitrogen losses due to leaching in winter and facilitate nitrogen capture from decomposing litter material by crops in the following season, thereby contributing to the sustainable management of arable systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14368730
Volume :
185
Issue :
4
Database :
Complementary Index
Journal :
Journal of Plant Nutrition & Soil Science
Publication Type :
Academic Journal
Accession number :
158318104
Full Text :
https://doi.org/10.1002/jpln.202200077