Back to Search Start Over

Toward the Optimal Design and FPGA Implementation of Spiking Neural Networks.

Authors :
Guo, Wenzhe
Yantir, Hasan Erdem
Fouda, Mohammed E.
Eltawil, Ahmed M.
Salama, Khaled Nabil
Source :
IEEE Transactions on Neural Networks & Learning Systems; Aug2022, Vol. 33 Issue 8, p3988-4002, 15p
Publication Year :
2022

Abstract

The performance of a biologically plausible spiking neural network (SNN) largely depends on the model parameters and neural dynamics. This article proposes a parameter optimization scheme for improving the performance of a biologically plausible SNN and a parallel on-field-programmable gate array (FPGA) online learning neuromorphic platform for the digital implementation based on two numerical methods, namely, the Euler and third-order Runge–Kutta (RK3) methods. The optimization scheme explores the impact of biological time constants on information transmission in the SNN and improves the convergence rate of the SNN on digit recognition with a suitable choice of the time constants. The parallel digital implementation leads to a significant speedup over software simulation on a general-purpose CPU. The parallel implementation with the Euler method enables around $180\times $ ($20\times $) training (inference) speedup over a Pytorch-based SNN simulation on CPU. Moreover, compared with previous work, our parallel implementation shows more than $300\times $ ($240\times $) improvement on speed and $180\times $ ($250\times $) reduction in energy consumption for training (inference). In addition, due to the high-order accuracy, the RK3 method is demonstrated to gain $2\times $ training speedup over the Euler method, which makes it suitable for online training in real-time applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2162237X
Volume :
33
Issue :
8
Database :
Complementary Index
Journal :
IEEE Transactions on Neural Networks & Learning Systems
Publication Type :
Periodical
Accession number :
158333416
Full Text :
https://doi.org/10.1109/TNNLS.2021.3055421