Back to Search Start Over

Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction.

Authors :
Armstrong, Michael R.
Radousky, Harry B.
Austin, Ryan A.
Tschauner, Oliver
Brown, Shaughnessy
Gleason, Arianna E.
Goldman, Nir
Granados, Eduardo
Grivickas, Paulius
Holtgrewe, Nicholas
Kroonblawd, Matthew P.
Lee, Hae Ja
Lobanov, Sergey
Nagler, Bob
Nam, Inhyuk
Prakapenka, Vitali
Prescher, Clemens
Reed, Evan J.
Stavrou, Elissaios
Walter, Peter
Source :
Journal of Applied Physics; 8/7/2022, Vol. 132 Issue 5, p1-10, 10p
Publication Year :
2022

Abstract

The response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of ∼80 GPa. Ultrafast x-ray diffraction using ∼100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
132
Issue :
5
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
158382002
Full Text :
https://doi.org/10.1063/5.0085297