Back to Search Start Over

CO2 Capture by Hybrid Ultramicroporous TIFSIX‐3‐Ni under Humid Conditions Using Non‐Equilibrium Cycling.

Authors :
Ullah, Saif
Tan, Kui
Sensharma, Debobroto
Kumar, Naveen
Mukherjee, Soumya
Bezrukov, Andrey A.
Li, Jing
Zaworotko, Michael J.
Thonhauser, Timo
Source :
Angewandte Chemie; 8/26/2022, Vol. 134 Issue 35, p1-8, 8p
Publication Year :
2022

Abstract

Although pyrazine‐linked hybrid ultramicroporous materials (HUMs, pore size <7 Å) are benchmark physisorbents for trace carbon dioxide (CO2) capture under dry conditions, their affinity for water (H2O) mitigates their carbon capture performance in humid conditions. Herein, we report on the co‐adsorption of H2O and CO2 by TIFSIX‐3‐Ni—a high CO2 affinity HUM—and find that slow H2O sorption kinetics can enable CO2 uptake and release using shortened adsorption cycles with retention of ca. 90 % of dry CO2 uptake. Insight into co‐adsorption is provided by in situ infrared spectroscopy and ab initio calculations. The binding sites and sorption mechanisms reveal that both CO2 and H2O molecules occupy the same ultramicropore through favorable interactions between CO2 and H2O at low water loading. An energetically favored water network displaces CO2 molecules at higher loading. Our results offer bottom‐up design principles and insight into co‐adsorption of CO2 and H2O that is likely to be relevant across the full spectrum of carbon capture sorbents to better understand and address the challenge posed by humidity to gas capture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
134
Issue :
35
Database :
Complementary Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
158634702
Full Text :
https://doi.org/10.1002/ange.202206613