Back to Search
Start Over
PIM1 promotes hepatic conversion by suppressing reprogramming-induced ferroptosis and cell cycle arrest.
- Source :
- Nature Communications; 9/6/2022, Vol. 13 Issue 1, p1-19, 19p
- Publication Year :
- 2022
-
Abstract
- Protein kinase-mediated phosphorylation plays a critical role in many biological processes. However, the identification of key regulatory kinases is still a great challenge. Here, we develop a trans-omics-based method, central kinase inference, to predict potentially key kinases by integrating quantitative transcriptomic and phosphoproteomic data. Using known kinases associated with anti-cancer drug resistance, the accuracy of our method denoted by the area under the curve is 5.2% to 29.5% higher than Kinase-Substrate Enrichment Analysis. We further use this method to analyze trans-omic data in hepatocyte maturation and hepatic reprogramming of human dermal fibroblasts, uncovering 5 kinases as regulators in the two processes. Further experiments reveal that a serine/threonine kinase, PIM1, promotes hepatic conversion and protects human dermal fibroblasts from reprogramming-induced ferroptosis and cell cycle arrest. This study not only reveals new regulatory kinases, but also provides a helpful method that might be extended to predict central kinases involved in other biological processes. Protein kinase-mediated phosphorylation plays a critical role in many biological processes. Here the authors develop a trans-omics-based algorithm called Central Kinase Inference to integrate quantitative transcriptomic and phosphoproteomic data, finding that PIM1 promotes hepatic conversion by suppressing reprogramming-induced ferroptosis and cell cycle arrest. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 13
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 158935346
- Full Text :
- https://doi.org/10.1038/s41467-022-32976-9