Back to Search Start Over

A Fault Diagnosis Model for Tennessee Eastman Processes Based on Feature Selection and Probabilistic Neural Network.

Authors :
Xu, Haoxiang
Ren, Tongyao
Mo, Zhuangda
Yang, Xiaohui
Source :
Applied Sciences (2076-3417); Sep2022, Vol. 12 Issue 17, p8868, 24p
Publication Year :
2022

Abstract

Since the classification methods mentioned in previous studies are currently unable to meet the accuracy requirements for fault diagnosis in large-scale chemical industries, these methods are gradually being eliminated and rarely used. This research offers a probabilistic neural network (PNN) based on feature selection and a bio-heuristic optimizer as a fault diagnostic approach for chemical industries using artificial intelligence. The sample characteristics are initially simplified using heuristic feature selection and support vector machine recursive feature elimination (SVM-RFE). Using PNN as the principal classifier of the fault diagnostic model and employing a modified salp swarm algorithm (MSSA) linked with the bio-heuristic optimizer to optimize the hidden smoothing factor (σ) of PNN further improves the classification performance of PNN. The MSSA introduces the Lévy flight method, greatly enhancing exploration capabilities and convergence speed compared to the standard SSA. To validate the engineering application of the suggested method, a PSO-SVM-REF-MSSA-PNN model is created, and TE process data are utilized in tests. The model's performance is evaluated by comparing its accuracy and F1-score to other regularly used classification models. The results indicate that the data samples selected by PSO-SVM-RFE features simplify and eliminate redundant features more effectively than other feature selection techniques. The MSSA algorithm's optimization capabilities surpass those of conventional optimization techniques. The PNN network is more suitable for fault detection and classification in the chemical industry. The three considerations listed above make it evident that the proposed approach might greatly help identify TE process problems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
17
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
159005912
Full Text :
https://doi.org/10.3390/app12178868