Back to Search Start Over

Lanthanide/actinide boride nanoclusters and nanomaterials based on boron frameworks consisting of conjoined Bn rings (n = 7–9).

Authors :
Lu, Xiao-Qin
Zhao, Xiao-Ni
Mu, Yue-Wen
Li, Si-Dian
Source :
Physical Chemistry Chemical Physics (PCCP); 9/21/2022, Vol. 24 Issue 35, p21078-21084, 7p
Publication Year :
2022

Abstract

Extensive global minimum searches augmented with first-principles theory calculations performed in this work indicate that the experimentally observed perfect inverse sandwich lanthanide boride complexes D<subscript>7h</subscript> La<subscript>2</subscript>B<subscript>7</subscript><superscript>−</superscript> (1), D<subscript>8h</subscript> La<subscript>2</subscript>B<subscript>8</subscript> (3), D<subscript>9h</subscript> La<subscript>2</subscript>B<subscript>9</subscript><superscript>−</superscript> (7) can be extended to their actinide counterparts C<subscript>2v</subscript> Ac<subscript>2</subscript>B<subscript>7</subscript><superscript>−</superscript> (1′), D<subscript>8h</subscript> Ac<subscript>2</subscript>B<subscript>8</subscript> (3′), D<subscript>9h</subscript> Ac<subscript>2</subscript>B<subscript>9</subscript><superscript>−</superscript> (7′) with a B<subscript>n</subscript> monocyclic ring (n = 7–9) sandwiched by two Ac dopants. Such M<subscript>2</subscript>B<subscript>n</subscript><superscript>−/0</superscript> inverse sandwiches (1/1′, 3/3′, 7/7′) can be used as building blocks to generate the ground-state C<subscript>2</subscript> La<subscript>4</subscript>B<subscript>13</subscript><superscript>−</superscript> (2)/Ac<subscript>4</subscript>B<subscript>13</subscript><superscript>−</superscript> (2′), D<subscript>2</subscript> La<subscript>4</subscript>B<subscript>15</subscript><superscript>−</superscript> (4)/Ac<subscript>4</subscript>B<subscript>15</subscript><superscript>−</superscript> (4′), C<subscript>3v</subscript>/C<subscript>3</subscript> La<subscript>4</subscript>B<subscript>18</subscript> (5)/Ac<subscript>4</subscript>B<subscript>18</subscript> (5′), O<subscript>h</subscript> Ac<subscript>7</subscript>B<subscript>24</subscript><superscript>+</superscript> (6′), O<subscript>h</subscript> Ac<subscript>7</subscript>B<subscript>24</subscript>, T<subscript>d</subscript> Ac<subscript>4</subscript>B<subscript>24</subscript> (8′), C<subscript>1</subscript> La<subscript>5</subscript>B<subscript>24</subscript><superscript>+</superscript> (9)/Ac<subscript>5</subscript>B<subscript>24</subscript><superscript>+</superscript> (9′), and T<subscript>d</subscript> Ac<subscript>4</subscript>B<subscript>29</subscript><superscript>−</superscript> (10′) which are based on boron frameworks consisting of multiple conjoined B<subscript>n</subscript> rings (n = 7–9). Detailed bonding analyses show that effective (d–p)σ, (d–p)π and (d–p)δ coordination bonds are formed between the B<subscript>n</subscript> rings and metal doping centers, conferring three-dimensional aromaticity and extra stability to the systems. In particular, the perfect body-centered cubic O<subscript>h</subscript> Ac<subscript>7</subscript>B<subscript>24</subscript><superscript>+</superscript> (6′) and O<subscript>h</subscript> Ac<subscript>7</subscript>B<subscript>24</subscript> with six conjoined B<subscript>8</subscript> rings can be extended in x, y, and z dimensions to form one-dimensional Ac<subscript>10</subscript>B<subscript>32</subscript> (11′), two-dimensional Ac<subscript>3</subscript>B<subscript>10</subscript> (12′), and three-dimensional AcB<subscript>6</subscript> (13′) nanomaterials, presenting a B<subscript>8</subscript>-based bottom-up approach from metal boride nanoclusters to their low-dimensional nanomaterials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14639076
Volume :
24
Issue :
35
Database :
Complementary Index
Journal :
Physical Chemistry Chemical Physics (PCCP)
Publication Type :
Academic Journal
Accession number :
159099113
Full Text :
https://doi.org/10.1039/d2cp03142f