Back to Search Start Over

Sentinel-1 detection of seasonal and perennial firn aquifers in the Antarctic Peninsula.

Authors :
Buth, Lena G.
Wouters, Bert
Veldhuijsen, Sanne B. M.
Lhermitte, Stef
Munneke, Peter Kuipers
van den Broeke, Michiel R.
Source :
Cryosphere Discussions; 10/4/2022, p1-20, 20p
Publication Year :
2022

Abstract

In recent years, the existence of firn aquifers in the Antarctic Peninsula (AP) has been confirmed by in-situ observations. Given their importance for understanding the hydrology of the Antarctic ice sheet, a more spatially comprehensive assessment of AP firn aquifers is desirable. The purpose of this study is to map firn aquifers in the AP from space using C-band Synthetic Aperture Radar imagery from ESA's Sentinel-1 mission. These observations enable the detection of firn aquifers at 1 x 1 km² resolution. The method presented here is based on quantifying the characteristic, gradual backscatter increase during the (partial) refreezing of the liquid water in the firn layer after the peak melt season. When applied to the available time series, it detects perennial aquifers (existing year-round) for the period 2017 to 2020, as well as seasonal aquifers which do not persist through winter. We acknowledge that the backscatter signature in any given year is indistinguishable for seasonal and perennial aquifers. We detect seasonal firn aquifers in the north and northwest of the AP, as well as on the Wilkins and George VI ice shelves. Only in the north and northwest of the AP, aquifers are detected each year in the observation period, here taken as a proxy for perennial firn aquifers. Both distributions agree with model simulations. Further in situ and modelling studies and longer time series of satellite observations are needed to validate the results of this study. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19940432
Database :
Complementary Index
Journal :
Cryosphere Discussions
Publication Type :
Academic Journal
Accession number :
159543863
Full Text :
https://doi.org/10.5194/tc-2022-127