Back to Search Start Over

Subwavelength Quasi-Periodic Array for Infrared Antireflection.

Authors :
Wang, Haoran
Zhang, Fan
Duan, Ji'an
Source :
Nanomaterials (2079-4991); Oct2022, Vol. 12 Issue 19, p3520, 8p
Publication Year :
2022

Abstract

Infrared antireflection of a zinc sulfide (ZnS) surface is important to improve performance of infrared detector systems. In this paper, double-pulse femtosecond laser micro-machining is proposed to fabricate a subwavelength quasi-periodic array (SQA) on ZnS substrate for infrared antireflection. The SQA consisting of approximately 30 million holes within a 2 × 2 cm<superscript>2</superscript> area is uniformly formed in a short time. The double-pulse beam can effectively suppress the surface plasma shielding effect, resulting in obtaining a larger array depth. Further, the SQA depth is tunable by changing pulse energy and pulse delay, and can be used to readily regulate the infrared transmittance spectra as well as hydrophobicity. Additionally, the optical field intensity distributions of the SQA simulated by the rigorous coupled-wave analysis method indicate the modulation effect by the array depth. Finally, the infrared imaging quality captured through an infrared window embedded SQA is evaluated by a self-built infrared detection system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
19
Database :
Complementary Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
159666337
Full Text :
https://doi.org/10.3390/nano12193520