Back to Search Start Over

Temperature Characteristic Analysis of the Output Intrinsically Safe Buck Converter and Its Design Consideration.

Authors :
Li, Yan
Liu, Shulin
Liang, Zhenqin
Zhang, Yuqing
Shen, Yijun
Source :
Energies (19961073); Oct2022, Vol. 15 Issue 19, p7308, 13p
Publication Year :
2022

Abstract

Aiming at the unreliability resulting from ignoring the temperature effect and randomness of switching frequency in the traditional design method of an intrinsically safe Buck converter, a reliable design method based on the minimum frequency and considering the temperature characteristic is proposed. The theoretical design range of capacitance is deduced according to the maximum output ripple voltage and output intrinsic safety performance requirements. Considering the temperature characteristics of the capacitor, the actual maximum and minimum capacitances are obtained corresponding to the theoretical design capacitance within a given temperature range. It is pointed out that the actual minimum capacitance increases with the decrease of switching frequency, while the actual maximum capacitance is independent of frequency. Therefore, it can be deduced that there exists a minimum frequency which can meet the requirements of both output ripple voltage and intrinsically safe performance. When the actual maximum capacitance equals the actual minimum capacitance, the analytic expression of the minimum frequency is obtained. Assuming a capacitance adjustment, the actual working frequency of the converter corresponding to the minimum frequency is deduced. The design flow of an intrinsically safe Buck converter based on the minimum switching frequency considering the temperature characteristic is presented. The correctness of the theoretical analysis and the feasibility of the proposed design method are verified by experimental results. This design method can also be applied to other types of intrinsically safe converters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
19
Database :
Complementary Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
159669281
Full Text :
https://doi.org/10.3390/en15197308