Back to Search Start Over

Automated Cervical Spinal Cord Segmentation in Real-World MRI of Multiple Sclerosis Patients by Optimized Hybrid Residual Attention-Aware Convolutional Neural Networks.

Authors :
Bueno, América
Bosch, Ignacio
Rodríguez, Alejandro
Jiménez, Ana
Carreres, Joan
Fernández, Matías
Marti-Bonmati, Luis
Alberich-Bayarri, Angel
Source :
Journal of Digital Imaging; Oct2022, Vol. 35 Issue 5, p1131-1142, 12p, 2 Color Photographs, 5 Diagrams, 1 Chart, 5 Graphs
Publication Year :
2022

Abstract

Magnetic resonance (MR) imaging is the most sensitive clinical tool in the diagnosis and monitoring of multiple sclerosis (MS) alterations. Spinal cord evaluation has gained interest in this clinical scenario in recent years, but, unlike the brain, there is a more limited choice of algorithms to assist spinal cord segmentation. Our goal was to investigate and develop an automatic MR cervical cord segmentation method, enabling automated and seamless spinal cord atrophy assessment and setting the stage for the development of an aggregated algorithm for the extraction of lesion-related imaging biomarkers. The algorithm was developed using a real-world MR imaging dataset of 121 MS patients (96 cases used as a training dataset and 25 cases as a validation dataset). Transversal, 3D T1-weighted gradient echo MR images (TE/TR/FA = 1.7–2.7 ms/5.6–8.2 ms/12°) were acquired in a 3 T system (Signa HD, GEHC) as standard of care in our clinical practice. Experienced radiologists supervised the manual labelling, which was considered the ground-truth. The 2D convolutional neural network consisted of a hybrid residual attention-aware segmentation method trained to delineate the cervical spinal cord. The training was conducted using a focal loss function, based on the Tversky index to address label imbalance, and an automatic optimal learning rate finder. Our automated model provided an accurate segmentation, achieving a validation DICE coefficient of 0.904 ± 0.101 compared with the manual delineation. An automatic method for cervical spinal cord segmentation on T1-weighted MR images was successfully implemented. It will have direct implications serving as the first step for accelerating the process for MS staging and follow-up through imaging biomarkers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08971889
Volume :
35
Issue :
5
Database :
Complementary Index
Journal :
Journal of Digital Imaging
Publication Type :
Academic Journal
Accession number :
159758936
Full Text :
https://doi.org/10.1007/s10278-022-00637-4