Back to Search Start Over

Mirror-induced reflection in the frequency domain.

Authors :
Hu, Yaowen
Yu, Mengjie
Sinclair, Neil
Zhu, Di
Cheng, Rebecca
Wang, Cheng
Lončar, Marko
Source :
Nature Communications; 10/22/2022, Vol. 13 Issue 1, p1-9, 9p
Publication Year :
2022

Abstract

Mirrors are ubiquitous in optics and are used to control the propagation of optical signals in space. Here we propose and demonstrate frequency domain mirrors that provide reflections of the optical energy in a frequency synthetic dimension, using electro-optic modulation. First, we theoretically explore the concept of frequency mirrors with the investigation of propagation loss, and reflectivity in the frequency domain. Next, we explore the mirror formed through polarization mode-splitting in a thin-film lithium niobate micro-resonator. By exciting the Bloch waves of the synthetic frequency crystal with different wave vectors, we show various states formed by the interference between forward propagating and reflected waves. Finally, we expand on this idea, and generate tunable frequency mirrors as well as demonstrate trapped states formed by these mirrors using coupled lithium niobate micro-resonators. The ability to control the flow of light in the frequency domain could enable a wide range of applications, including the study of random walks, boson sampling, frequency comb sources, optical computation, and topological photonics. Furthermore, demonstration of optical elements such as cavities, lasers, and photonic crystals in the frequency domain, may be possible. We show frequency domain mirrors that provide reflections of optical mode propagation in the frequency domain. We theoretically investigated the mirror properties and experimentally demonstrate it using polarization and coupled-resonator-based coupling on thin film Lithium Niobate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
159896544
Full Text :
https://doi.org/10.1038/s41467-022-33529-w