Back to Search Start Over

Achieving software-equivalent accuracy for hyperdimensional computing with ferroelectric-based in-memory computing.

Authors :
Kazemi, Arman
Müller, Franz
Sharifi, Mohammad Mehdi
Errahmouni, Hamza
Gerlach, Gerald
Kämpfe, Thomas
Imani, Mohsen
Hu, Xiaobo Sharon
Niemier, Michael
Source :
Scientific Reports; 11/10/2022, Vol. 12 Issue 1, p1-15, 15p
Publication Year :
2022

Abstract

Hyperdimensional computing (HDC) is a brain-inspired computational framework that relies on long hypervectors (HVs) for learning. In HDC, computational operations consist of simple manipulations of hypervectors and can be incredibly memory-intensive. In-memory computing (IMC) can greatly improve the efficiency of HDC by reducing data movement in the system. Most existing IMC implementations of HDC are limited to binary precision which inhibits the ability to match software-equivalent accuracies. Moreover, memory arrays used in IMC are restricted in size and cannot immediately support the direct associative search of large binary HVs (a ubiquitous operation, often over 10,000+ dimensions) required to achieve acceptable accuracies. We present a multi-bit IMC system for HDC using ferroelectric field-effect transistors (FeFETs) that simultaneously achieves software-equivalent-accuracies, reduces the dimensionality of the HDC system, and improves energy consumption by 826x and latency by 30x when compared to a GPU baseline. Furthermore, for the first time, we experimentally demonstrate multi-bit, array-level content-addressable memory (CAM) operations with FeFETs. We also present a scalable and efficient architecture based on CAMs which supports the associative search of large HVs. Furthermore, we study the effects of device, circuit, and architectural-level non-idealities on application-level accuracy with HDC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
160141050
Full Text :
https://doi.org/10.1038/s41598-022-23116-w