Back to Search
Start Over
Machine Learning Models for Predicting Postoperative Outcomes following Skull Base Meningioma Surgery.
- Source :
- Journal of Neurological Surgery. Part B. Skull Base; Dec2022, Vol. 83 Issue 6, p635-645, 11p
- Publication Year :
- 2022
-
Abstract
- Objective While predictive analytic techniques have been used to analyze meningioma postoperative outcomes, to our knowledge, there have been no studies that have investigated the utility of machine learning (ML) models in prognosticating outcomes among skull base meningioma patients. The present study aimed to develop models for predicting postoperative outcomes among skull base meningioma patients, specifically prolonged hospital length of stay (LOS), nonroutine discharge disposition, and high hospital charges. We also validated the predictive performance of our models on out-of-sample testing data. Methods Patients who underwent skull base meningioma surgery between 2016 and 2019 at an academic institution were included in our study. Prolonged hospital LOS and high hospital charges were defined as >4 days and >$47,887, respectively. Elastic net logistic regression algorithms were trained to predict postoperative outcomes using 70% of available data, and their predictive performance was evaluated on the remaining 30%. Results A total of 265 patients were included in our final analysis. Our cohort was majority female (77.7%) and Caucasian (63.4%). Elastic net logistic regression algorithms predicting prolonged LOS, nonroutine discharge, and high hospital charges achieved areas under the receiver operating characteristic curve of 0.798, 0.752, and 0.592, respectively. Further, all models were adequately calibrated as determined by the Spiegelhalter Z -test (p >0.05). Conclusion Our study developed models predicting prolonged hospital LOS, nonroutine discharge disposition, and high hospital charges among skull base meningioma patients. Our models highlight the utility of ML as a tool to aid skull base surgeons in providing high-value health care and optimizing clinical workflows. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 21936331
- Volume :
- 83
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Journal of Neurological Surgery. Part B. Skull Base
- Publication Type :
- Academic Journal
- Accession number :
- 160174264
- Full Text :
- https://doi.org/10.1055/a-1885-1447