Back to Search Start Over

Machine Learning Models for Predicting Postoperative Outcomes following Skull Base Meningioma Surgery.

Authors :
Jimenez, Adrian E.
Porras, Jose L.
Azad, Tej D.
Shah, Pavan P.
Jackson, Christopher M.
Gallia, Gary
Bettegowda, Chetan
Weingart, Jon
Mukherjee, Debraj
Source :
Journal of Neurological Surgery. Part B. Skull Base; Dec2022, Vol. 83 Issue 6, p635-645, 11p
Publication Year :
2022

Abstract

Objective  While predictive analytic techniques have been used to analyze meningioma postoperative outcomes, to our knowledge, there have been no studies that have investigated the utility of machine learning (ML) models in prognosticating outcomes among skull base meningioma patients. The present study aimed to develop models for predicting postoperative outcomes among skull base meningioma patients, specifically prolonged hospital length of stay (LOS), nonroutine discharge disposition, and high hospital charges. We also validated the predictive performance of our models on out-of-sample testing data. Methods  Patients who underwent skull base meningioma surgery between 2016 and 2019 at an academic institution were included in our study. Prolonged hospital LOS and high hospital charges were defined as >4 days and >$47,887, respectively. Elastic net logistic regression algorithms were trained to predict postoperative outcomes using 70% of available data, and their predictive performance was evaluated on the remaining 30%. Results  A total of 265 patients were included in our final analysis. Our cohort was majority female (77.7%) and Caucasian (63.4%). Elastic net logistic regression algorithms predicting prolonged LOS, nonroutine discharge, and high hospital charges achieved areas under the receiver operating characteristic curve of 0.798, 0.752, and 0.592, respectively. Further, all models were adequately calibrated as determined by the Spiegelhalter Z -test (p >0.05). Conclusion  Our study developed models predicting prolonged hospital LOS, nonroutine discharge disposition, and high hospital charges among skull base meningioma patients. Our models highlight the utility of ML as a tool to aid skull base surgeons in providing high-value health care and optimizing clinical workflows. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21936331
Volume :
83
Issue :
6
Database :
Complementary Index
Journal :
Journal of Neurological Surgery. Part B. Skull Base
Publication Type :
Academic Journal
Accession number :
160174264
Full Text :
https://doi.org/10.1055/a-1885-1447