Back to Search Start Over

Effect of Ammonia-Oxidizing Bacterial Strains That Coexist in Rhizosphere Soil on Italian Ryegrass Regrowth.

Authors :
Wu, Di
Wang, Xiao-Ling
Zhu, Xi-Xia
Wang, Hai-Hong
Liu, Wei
Qi, Lin
Song, Peng
Zhang, Ming-Ming
Zhao, Wei
Source :
Micromachines; Nov2022, Vol. 13 Issue 11, p2122, 16p
Publication Year :
2022

Abstract

Potted Italian ryegrasses (Lolium multiflorum L.) were used to investigate the effect of ammonia-oxidizing bacterial (AOB) strain that coexisted in rhizosphere soil on Italian ryegrass regrowth. The results showed that the isolated and screened AOB strain (S2_8_1) had 100% similarity to Ensifer sesbaniae. The inoculation of S2_8_1 on day 44 before defoliation caused its copy number in rhizosphere soils to increase by 83–157% from day 34 before defoliation to day 14 after defoliation compared with that in Italian ryegrass without S2_8_1 inoculation, indicating that S2_8_1 coexisted permanently with Italian ryegrass. The coexistence promoted the delivery of root-derived cytokinin to leaves and to increase its cytokinin concentrations; thus, the Italian ryegrass regrowth accelerated. During the 14-day regrowth period, the S2_8_1 coexistence with Italian ryegrass caused its leaf and xylem sap cytokinin concentrations, rhizosphere soil nitrification rates, net photosynthetic rates, and total biomass to increase by 38%, 58%, 105%, 18%, and 39% on day 14 after defoliation, respectively. The inoculation of S2_8_1 on day 2 before defoliation also increased the regrowth of Italian ryegrass. Thus, the coexistence of AOB with Italian ryegrass increased its regrowth by regulating the delivery of cytokinins from roots to leaves. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2072666X
Volume :
13
Issue :
11
Database :
Complementary Index
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
160206174
Full Text :
https://doi.org/10.3390/microorganisms10112122