Back to Search Start Over

Resistive Switching Characteristics of Alloyed AlSiO x Insulator for Neuromorphic Devices.

Authors :
Lee, Yunseok
Jang, Jiung
Jeon, Beomki
Lee, Kisong
Chung, Daewon
Kim, Sungjun
Source :
Materials (1996-1944); Nov2022, Vol. 15 Issue 21, p7520, 8p
Publication Year :
2022

Abstract

Charge-based memories, such as NAND flash and dynamic random-access memory (DRAM), have reached scaling limits and various next-generation memories are being studied to overcome their issues. Resistive random-access memory (RRAM) has advantages in structural scalability and long retention characteristics, and thus has been studied as a next-generation memory application and neuromorphic system area. In this paper, AlSiO<subscript>x</subscript>, which was used as an alloyed insulator, was used to secure stable switching. We demonstrate synaptic characteristics, as well as the basic resistive switching characteristics with multi-level cells (MLC) by applying the DC sweep and pulses. Conduction mechanism analysis for resistive switching characteristics was conducted to understand the resistive switching properties of the device. MLC, retention, and endurance are evaluated and potentiation/depression curves are mimicked for a neuromorphic device. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
SCALABILITY
OPTICAL disks

Details

Language :
English
ISSN :
19961944
Volume :
15
Issue :
21
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
160221140
Full Text :
https://doi.org/10.3390/ma15217520